Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.15.545129

ABSTRACT

The coronavirus disease of 2019 (COVID-19) is a highly contagious respiratory illness that has become a global health crisis with new variants, an unprecedented number of infections, and deaths and demands urgent manufacturing of potent therapeutics. Despite the success of vaccination campaigns around the globe, there is no particular therapeutics approved to date for efficiently treating infected individuals. Repositioning or repurposing previously effective antivirals against RNA viruses to treat COVID-19 patients is a feasible option. Remdesivir is a broad-spectrum antiviral drug that the Food and Drug Administration (FDA) licenses for treating COVID-19 patients who are critically ill patients. Remdesivir's low efficacy, which has been shown in some clinical trials, possible adverse effects, and dose-related toxicities are issues with its use in clinical use. Our study aimed to design potent derivatives of remdesivir through the functional group modification of the parent drug targeting RNA-dependent RNA polymerase (RdRp) and main protease (MPro) of SARS-CoV-2. The efficacy and stability of the proposed derivatives were assessed by molecular docking and extended molecular dynamics simulation analyses. Furthermore, the pharmacokinetic activity was measured to ensure the safety and drug potential of the designed derivatives. The derivatives were non-carcinogenic, chemically reactive, highly interactive, and stable with the target proteins. D-CF3 is one of the designed derivatives that finally showed stronger interaction than the parent drug, according to the docking and dynamics simulation analyses, with both target proteins. However, in vitro and in vivo investigations are guaranteed to validate the findings in the future. Keywords: SARS-CoV-2; RNA-dependent RNA polymerase (RdRp); Main protease (MPro); Remdesivir; Modified derivatives; Molecular docking; Molecular dynamics simulation.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Death , COVID-19 , Respiratory Insufficiency
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.27.119610

ABSTRACT

BackgroundCOVID-19 is a recent pandemic that started to spread out worldwide from Wuhan, China. This disease is caused by a newly discovered strain of the coronavirus, namely SARS CoV-2. Lung cancer patients are reported to be more susceptible to COVID-19 infection. To evaluate the probable reasons behind the excessive susceptibility and fatality of lung cancer patients to COVID-19 infection, we targeted two most crucial biomarkers of COVID-19, ACE2 and CXCL10. ACE2 plays a vital role in the SARS CoV-2 entry into the host cell while CXCL10 is a cytokine mainly responsible for the lung cell damage involving in a cytokine storm. MethodsFirstly, we used the TIMER, UALCAN and GEPIA2 databases to analyze the expression and correlation of ACE2 and CXCL10 in LUAD and LUSC. After that, using the cBioPortal database, we performed an analytical study to determine the genetic changes in ACE2 and CXCL10 protein sequences that are responsible for lung cancer development. Finally, we analyzed different functional approaches of ACE2, CXCL10 and their co-expressed genes associated with lung cancer and COVID-19 development by using the PANTHER database. ResultsInitially, we observed that ACE2 and CXCL10 are mostly overexpressed in LUAD and LUSC. We also found the functional significance of ACE2 and CXCL10 in lung cancer development by determining the genetic alteration frequency in their amino acid sequences. Lastly, by doing the functional assessment of the targeted genes, we identified that ACE2 and CXCL10 along with their commonly co-expressed genes are respectively involved in the binding activity and immune responses in case of lung cancer and COVID-19 infection. ConclusionsFinally, on the basis of this systemic analysis, we came to the conclusion that ACE2 and CXCL10 are possible biomarkers responsible for the higher susceptibility and fatality of lung cancer patients towards the COVID-19.


Subject(s)
COVID-19 , Neoplasms , Lung Neoplasms
SELECTION OF CITATIONS
SEARCH DETAIL